A Fundamentally Topological Perspective on Graph Theory

نویسنده

  • Antoine Vella
چکیده

We adopt a novel topological approach for graphs, in which edges are modelled as points as opposed to arcs. The model of “classical” topologized graphs translates graph isomorphism into topological homeomorphism, so that all combinatorial concepts are expressible in purely topological language. This allows us to extrapolate concepts from finite graphs to infinite graphs equipped with a compatible topology, which, dropping the “classical” requirement, need not be unique. We bring standard concepts from general topology to bear upon questions of a combinatorial inspiration, in an infinite setting. We show how (possibly finite) graph-theoretic paths are, without any technical subterfuges, a subclass of a broad category of topological spaces, namely “paths”, that includes Hausdorff arcs, the real line and all connected orderable spaces (of arbitrary cardinality). We show that all paths, and the topological generalizations of cycles, are topologized graphs. We use feeble regularity to explore relationships between the topologies on the vertex set and the whole space. We employ compactness and weak normality to prove the existence of our analogues for minimal spanning sets and fundamental cycles. In this framework, we generalize theorems from finite graph theory to a broad class of topological structures, including the facts that fundamental cycles are a basis for the cycle space, and the orthogonality between bond spaces and cycle spaces. We show that this can be accomplished in a setup where the set of edges of a cycle has a loose relationship with the cycle itself. It turns out that, in our model, feeble regularity excludes several pathologies, including one identified previously by Diestel and Kühn, in a very different approach which addresses the same issues. Moreover, the spaces surgically constructed by the same authors are feebly regular and, if the original graph is 2-connected, compact. We consider an attractive relaxation of the T1 separation axiom, namely the S1 axiom, which leads to a topological universe parallel to the usual one in mainstream topology. We use local connectedness to unify graph-theoretic trees with the dendrites of continuum theory and a more general class of well behaved dendritic spaces, within the class of ferns. We generalize results of Whyburn and others concerning dendritic spaces to ferns, and show how cycles and ferns, in particular paths, are naturally S1 spaces, and hence may be viewed as topologized hypergraphs. We use topological separation properties with a distinct combinatorial flavour to unify the theory of cycles, paths and ferns. This we also do via a setup involving total orders, cyclic orders and partial orders. The results on partial orders are similar to results of Ward and Muenzenberger and Smithson in the more restrictive setting of Hausdorff dendritic spaces. Our approach is quite different and, we believe, lays the ground for an appropriate notion of completion which links Freudenthal ends of ferns simultaneously with the work of Polat for non-locally-finite graphs and the paper of Allen which recognizes the unique dendritic compactification of a rim-compact dendritic space as its Freudenthal compactification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Graph Theory: Relationship of Topological Indices with the Partition Coefficient (logP) of the Monocarboxylic Acids

It is well known that the chemical behavior of a compound is dependent upon the structure of itsmolecules. Quantitative structure – activity relationship (QSAR) studies and quantitative structure –property relationship (QSPR) studies are active areas of chemical research that focus on the nature ofthis dependency. Topological indices are the numerical value associated with chemical constitution...

متن کامل

Application of Graph Theory: Investigation of Relationship Between Boiling Temperatures of Olefins and Topological Indices

Abstract: In this study an appropriate computational approach was presented for estimating the boiling temperatures of 41 different types of olefins and their derivatives. Based on the guidelines of this approach, several structural indices related to the organic components were applied using graph theory. Meanwhile, in addition to evaluating the relation between the boiling temperatures of ole...

متن کامل

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

Application of Graph Theory to Some Thermodynamic Properties and Topological Indices

The relationship between the Randic , Wiener, Hosoya , Balaban, Schultz indices, Harary numbers andDistance matrix to enthalpies of formation (Airf), heat capacity, (Cp) , enthalpies of combustion (AH °c ),enthalpy of vaporization (AH °vap) and normal boiling points (bpK)of C2 C10 normal alkanes isrepresented

متن کامل

The Structural Relationship Between Topological Indices and Some Thermodynamic Properties

The fact that the properties of a molecule are tightly connected to its structural  characteristics  is one of the fundamental concepts in chemistry. In this connection,  graph theory has been successfully applied in developing some relationships between topological indices and some thermodynamic properties. So ,  a novel method for computing the new descriptors to construct a quantitative rela...

متن کامل

dominating subset and representation graph on topological spaces

Let a topological space. An intersection graph on a topological space , which denoted by ‎ , is an undirected graph which whose vertices are open subsets of and two vertices are adjacent if the intersection of them are nonempty. In this paper, the relation between topological properties of  and graph properties of ‎  are investigated. Also some classifications and representations for the graph ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005